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I. Abstract 

This research was conducted in order to experimentally test certain components of the 

theory of elasticity. The theory was tested through a variety of extensions, bends, compressions, 

and shears. The resulting strain was measured using rulers, micrometers, calipers, and strain 

gauges. 

II. Theory 

For a simple extension, the Young’s modulus (E) of a material can be found using 

equation 5.2 in Theory of Elasticity,  

 uzz = p / E (1) 

 where uzz is the longitudinal strain or relative change in length, given by the longitudinal 

displacement (∆z) per unit unstrained height (h0), and p is the longitudinal stress, given by 

normal force (FN) per unit cross-sectional area (A) [1].  

 uzz = ∆z / h0 (2) 

 p = FN / A (3) 

The Poisson ratio of the material is then given by equation 5.4 in Theory of Elasticity, 

 uxx = − σ × uzz (4) 

where uxx is transverse strain, given by the relative change in width  

 uxx = ∆x / w0 (5) 

and uzz is longitudinal strain, given by Equation 2 [1]. These experimental variables are shown in 

Figures 1 and 2 for a simple extension of a wire and foam block respectively. 



2 
	
  

 For a pure shear, the shear modulus (µ) of a material can be found using the following 

equation, 

 p = µ × ε (6) 

where p is the stress given by tangential force (FT) per unit cross-sectional area (A), and ε is the 

shear strain given by the displacement of the surface to which the force is applied (∆x) per unit 

height (h). 

 p = FT / A (7) 

 ε = ∆x / h (8) 

Figure 3 depicts an example of a shear strain showing these experimental variables. 

 For a bending rod, the Young’s modulus (E) of a material is given by, 

 uzz = [– (3z0) / (Ea2b)] F (9) 

where uzz is the relative change in length of a point on the surface of the rod, z0 is the initial 

length, a is the thickness of the rod, b is the width, and F is the applied force. These experimental 

variables for a bending rod are demonstrated in Figure 4. 

 For a standing rod, the lateral strain (uxx) as the rod expands due to the force of its own 

weight is given by 

 uxx = (σρg / E) (l – z) (10) 

where σ is the Poisson ratio, ρ is the density, and E is the Young’s modulus of the material. The 

length of the rod is given by l, and the distance from the point where the strain is being measured 

to the base of the rod is z. Finally, g is gravitational acceleration. A depiction of a standing rod 

labeled with the experimental variables l and z is given in Figure 5. 

 For elastic waves, the velocities of the transverse (ct) and longitudinal (cl) waves in a 

medium are given by 
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 ct = √[ E (1 − σ) / ρ (1 + σ) (1 − 2σ)] and cl = √[E / 2ρ (1 + σ)] (11) 

where E is the Young’s modulus of the material, σ is the Poisson ratio, and ρ is the density [1]. 

III. Experimental Details 

a. Simple Extension of Wire 

A thin copper, a thick copper, and a steel wire were each hung from height of 60 ft. The 

wires extended from the hanging point to the ground, unstrained. For each wire, the diameter was 

measured using a micrometer to find the cross-sectional area. A small piece of tape was used to 

mark an arbitrary location on each wire near the bottom (Figure 1). The height of the tape from 

the ground was recorded and subtracted from the full length of the wire (60 ft) in order to obtain 

h0. A ruler was mounted behind each wire so that the location of the tape relative to the ruler 

could be measured. This initial measurement was recorded as zero displacement. A loop was 

made on each wire, below the tape, from which weights would be hung. Force was applied, using 

weights or a spring gauge, in the longitudinal direction. The amount of force applied was 

increased incrementally and was recorded in Newtons. For each amount of force, the new 

location of the tape along the ruler was recorded. The zero mark was subtracted from this value 

to give the displacement of the wire ∆z. The stress and strain were calculated using the data 

recorded and equations 2 and 3 respectively. Table 1 gives the types of wires used and their 

cross-sectional areas. 
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Figure 1. Diagram of the experimental setup for the simple extension of wire. 

Table 1. Types of wires used in simple extension experiment and their cross-sectional areas. 

 Cross-sectional area (cm2) E (GPa) 
Thin copper 8.96×10-4 76 
Thick copper 4.23×10-3 78 
Steel 7.42×10-4 1.8×102 

 

b. Simple Extension of Foam Blocks 

Nine foam blocks of varying dimensions were glued to a board. The board was clamped 

so that the blocks hung upside down. For each block, the initial height (h0), width (w0), length 

(L), and cross-sectional area (A) were measured using rulers and calipers (Table 2). A thin 

plexiglass plate with an equivalent cross-sectional area was attached to the top face of each 

block. A ruler was secured so that the longitudinal displacement of each foam block could be 

recorded. A spring gauge was hung from a loop of string that was attached to the center of each 

plexiglass square. The spring gauge was used to apply different amounts of longitudinal force 

(FN) to each block. For each amount of force applied, the transverse displacement (∆x), measured 

using calipers, and the vertical displacement (∆z), along the ruler, were recorded in millimeters. 

The longitudinal strain (uzz), stress (p), and transverse strain (uxx) were calculated from this 
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experimental data using equations 2, 3, and 5 respectively. This experimental arrangement is 

displayed in Figure 2. 

 

Figure 2. Diagram of the experimental setup for the simple extension of foam blocks. 

Table 2. The dimensions in millimeters, the Young’s modulus (E) in kilopascals, and the Poisson 

ratio (σ) are given for each foam block. 

Block L (mm) w0 (mm) h0 (mm) E (kPa) σ 
1 19.6 20.8 19.9 195 0.876 
2 21.7 19.0 43.7 177 0.759 
3 19.4 18.5 83.2 181 0.733 
4 31.1 31.4 23.5 241 0.950 
5 31.9 31.1 42.6 443 1.908 
6 32.2 32.4 81.5 260 1.200 
7 38.4 41.5 21.0 144 0.538 
8 40.5 41.7 42.7 372 1.020 
9 41.1 40.5 79.4 150 0.782 
 

c. Pure Shear of Foam Blocks 

Eleven foam blocks of various dimensions were glued to a board, each with a plexiglass 

square of equivalent cross-sectional area glued to its top face (Figure 3). The dimensions of each 

block, measured using rulers and calipers, are given in Table 3, including height (h). The cross-

sectional area of each block (A) was calculated from the measurements of length and width. 

Rulers were mounted on the board so that the horizontal position of each block relative to its 

ruler could be determined. A spring gauge was hooked through a loop of string attached 
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tangential to the top face of each block in order to apply a tangential force (FT). As the amount of 

applied force was incremented, the resulting horizontal displacement of the top face (∆x) of each 

block along the ruler was recorded. The stress (p) and shear strain (ε) were calculated using the 

experimental measurements and equations 7 and 8 respectively.  

 

 

Figure 3. Diagram of the experimental setup for the pure shear of foam blocks, where FT is the 

tangential force, h is the height of the block, A is the cross-sectional area, ∆x is the change in 

position of the top face of the block along the ruler, and the coordinate axes are given. 

Table 3. The length, width, and height (h) of the foam blocks in millimeters and the shear 

modulus (µ) in kilopascals are given for the eleven blocks in the pure shear experiment.     

Block Length (mm) Width (mm) h (mm) µ  (kPa) 
1 39.5 39.8 39.9 22.0 
2 40.5 40.5 20.4 43.1 
3 40.6 40.2 10.5 121 
4 29.9 30.8 40.9 32.6 
5 29.8 30.8 21.1 55.6 
6 29.4 31.3 9.2 86.6 
7 22.2 22.4 39.5 29.3 
8 22.3 20.1 23.0 31.1 
9 23.0 21.6 9.8 38.7 
10 12.2 43.0 20.8 38.3 
11 41.4 11.9 22.8 16.3 
 

d. Strain in a Bending Rod 
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A strain gauge was mounted on an aluminum bar with the grid parallel to the length of 

the rod (Figure 4). One end of the bar was clamped to a counter. The distance from the clamp to 

the other end of the rod was recorded as initial unstrained length (z0). A spring gauge was 

attached to the unclamped end in order to apply force down or up on the bar, causing it to bend. 

The leads connected the strain gauge to a Wheatstone bridge, and the bridge was connected to a 

multimeter. As different amounts of force were applied, the voltage was recorded. Downward 

force resulted in a negative change in voltage and upward, a positive change. The strain for each 

amount of applied force was calculated using  

 ε=4∆V/(10V*G) (12) 

 where G was the gauge factor, 2.03, and ∆V was the change in voltage read on the multimeter. 

The rod was then clamped to a new position and the process repeated for two other values of z0. 

This experiment was repeated for two rods of different width (b) and thickness (a) given in Table 

4. 

 

Figure 4. Diagram of the experimental setup for bending a metal rod. 

Table 4. The unstrained length (z0) in centimeters, thickness (a) in millimeters, width (b) in 

centimeters, and Young’s modulus (E) in gigapascals for each rod.   

Rod z0 (cm) a (mm) b (cm) E (GPa) 
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1 29.0 2.4 2.5 1.5×102 

1 25.0 2.4 2.5 1.3×102 

1 19.5 2.4 2.5 89 
2 38.1 1.7 10.1 1.2×102 

2 35.1 1.7 10.1 1.1×102 

2 29.0 1.7 10.1 91 
  

e. Strain in a Standing Rod 

A strain gauge was mounted on a steel rod, near the bottom, so that the grid was 

perpendicular to the length of the rod. The strain gauge was connected to an amplifier with a gain 

of 1000, which was strapped to the rod. The amplifier was then connected to a power source and 

to a chart recorder. As the rod was raised off the ground and placed down again, the change in 

voltage on the chart recorder indicated a change in strain in the base of the rod as it contracted 

and expanded. For runs one and two, the chart recorder wrote as the rod was quickly and 

carefully lifted and set down several times. Then the process was repeated with weight added to 

the rod so that the effect was amplified. The length (l) of the rod was measured to be 91.4 cm, 

and the distance from the strain gauge to the base of the rod was 26.7 cm. This experimental 

arrangement is shown in Figure 5, and a circuit diagram of the amplifier is given in Figure 6. 

 

Figure 5. This is an image of the standing rod length l, showing the strain gauge positioned a 

distance of z above the base of the rod. The strain gauge is connected to an amplifier strapped to 

the rod, which connects to the power supply and chart recorder. 
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Figure 6. A circuit diagram of the amplifier that was connected to the strain gauge. 

This experiment was repeated for a plexiglass rod, with length (l) 184.2 cm and position 

of strain gauge (z) 2.5 cm. Three runs were recorded without added weight, and one with added 

weight. For both the metal and plexiglass rods, the voltage reading of the chart recorder drifted, 

so the rods had to be quickly lifted and lowered to decrease the effect of the drift on the recorded 

change in voltage. Figure 7 gives an example of the chart recorder read out. 

 

Figure 7. The chart recorder output for run three of the experiment with the plexiglass rod. 

 From the chart recorder output for each run, the change in voltage for each time the rod 

was lifted and set down was measured, and the mean and standard deviation of this data were 

found. The strain (uxx) for each run was calculated from the mean change in voltage (∆V) using 

Equation 12 (Tables 5 and 6).  

f. Speculative Section – Sound waves 
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A transducer could be used to convert an electrical signal from a pulse generator to a 

mechanical signal in a sample, such as plexiglass. A transducer on the other end of the material 

could send an electrical signal to an oscilloscope, and the time it takes for the signal to travel 

through the material could be measured in order to calculate the speed of the longitudinal waves. 

Then, this process would be repeated but with the mechanical signal at a different angle of 

incidence. Again the time of travel would be measured. This wave can be split into horizontal 

and vertical components, one along the direction of the incident signal and one perpendicular to 

this direction. Knowing the longitudinal wave speed from the first part of the experiment and 

resultant wave speed just measured, the transverse speed could be calculated.  

II. Results 

a. Simple Extension of Wire 

The graph below (Figure 8) shows a plot of stress vs. strain for the wire experiment. The 

Young’s moduli (E), determined from the linear fits and equation 1, for each wire are given in 

Table 1. The slopes of the two copper wires were very similar, but the steel wire has a much 

smaller slope. There is a wave in the data plotted for the steel wire. 
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Figure 8. Plot of stress (p) vs. strain (uzz) for the long wires. 

b. Simple Extension of Foam Blocks 

The two graphs below (Figures 9 and 10) show stress vs. longitudinal strain for the 

simple extension experiment with foam blocks. The first graph (Figure 9) gives the results for 

blocks one through three, and the second graph (Figure 10) displays the data for blocks four 

through nine. The two blocks indicated by open circles, blocks three and six, seemed to be a 

different type of foam than the other seven blocks. The Young’s moduli (E) for each block, given 

by the linear fit and Equation 1 are given in Table 2. The Young’s moduli of blocks four, five, 

six, and eight were much larger than those of the other blocks. 

 

Figure 9. Plot of stress (p) vs. strain (uzz) for foam blocks one through three. 
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Figure 10. Plot of stress (p) vs. longitudinal strain (uzz) for foam blocks four through six. 

The plot of longitudinal strain vs. the negative of the transverse strain for the same foam 

block experiment is shown below (Figures 11 and 12). Blocks three and six, the second type of 

foam, are designated by open circles. The Poisson ratios for each block (σ), given in the Table 2, 

were found from the linear fit of each line using Equation 4. The Poisson ratio values are all 

greater than 0.5. 

 

Figure 11. Plot of longitudinal strain (uzz) vs. transverse strain (uxx) for blocks one through three. 
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Figure 12. Plot of longitudinal strain (uzz) vs. transverse strain (uxx) for blocks four through nine. 

c. Pure Shear of Foam Blocks 

The graphs below are plots of stress vs. strain for the shear strain experiment using foam 

blocks. The data for blocks one through six are plotted in the first graph (Figure 13), and the data 

for blocks seven through eleven are plotted in the second graph (Figure 14). The blocks indicated 

by the open shapes (blocks 3, 6, 10, and 11) did not have pure shear; some vertical displacement 

still occurred (Figure 15). The shear moduli for each block, given in Table 3, were found from 

the linear fits using Equation 6. 
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Figure 13. Plot of stress (p) vs. shear strain (ε) for foam blocks one through six. 

 

Figure 14. Plot of stress (p) vs. shear strain (ε) for foam blocks seven through eleven. 
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Figure 15. The dashed line shows the initial, unstrained position of the foam block. The solid line 

shows the position of the foam block, and the resulting vertical displacement ∆z, when a 

tangential force was applied. This behavior was demonstrated by blocks 3, 6, 10, and 11. 

d. Strain in a Bending Rod 

The graphs below (Figures 16 and 17) are plots of force vs. strain for rods one and two 

respectively. The positive force and strain correspond to an upward force on the rod, while the 

negative force and strain correspond to a downward force on the rod. The relationship is linear. 

The Young’s moduli for each trial, given in Table 4, were calculated from the dimensions of 

each rod and the corresponding linear fits using Equation 9. 

 

Figure 16. Plot of force in Newtons vs. strain in millistrains for rod one in the bending rod 

experiment, for three initial lengths (z0) in centimeters. Negative strain corresponds to a negative 

(downward) force on the rod, and positive strain, to a positive (upward) force on the rod. The 

slopes (m) of the linear fits for each value of z0 are given. 
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Figure 17. Plot of force in Newtons vs. strain in millistrains for rod two of the bending rod 

experiment, with three initial lengths (z0) and the slope of the linear fit (m) for each. 

e. Strain in a Standing Rod 

 For the upright steel rod, the average strain calculated for each run and the corresponding 

standard deviation for that run are listed in Table 5 below. Run 3 was conducted with additional 

weight on the rod. The strain recorded in run 3 was more than double the strain in runs 1 and 2. 

 For the plexiglass rod, the average strain and standard deviation for the four runs are 

given in Table 6. The fourth run was conducted with additional weight on the rod. Strain was 

much greater in the plexiglass rod than in the steel rod. 

Table 5. The strain (uxx) in microstrains calculated from the average change in potential and the 

standard deviation (σ) of the measured changes in potential for runs one through three with the 

steel rod. The third run was carried out with weight added to the rod. 

Run uxx (microstrains) Standard deviation 
1 0.17 0.64 
2 0.14 0.20 
3 0.47 0.65 
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Table 6. The strain (uxx) in millistrains calculated from the average change in potential and the 

standard deviation of the measured changes in potential for runs one through four with the 

plexiglass rod. Run four was conducted with additional weight on the rod. 

Run uxx (microstrains) Standard deviation  
1 6.83 4.48 
2 6.53 4.82 
3 5.43 5.46 
4 19.0 10.05 

IV. Conclusion 

a. Simple Extension of a Wire 

The Young’s modulus for copper is 117 GPa, which is about 1.5 times the value 

determined by the experiment, given in Table 1, for the thin and thick copper. This error may 

have been a result of inaccurate measurement of the displacement of the wire along the ruler. 

The ruler should be fixed at a position just behind the wire, so that the position of the tape can be 

more accurately read. The wire may also have slipped from its initial position as force was 

applied. The wire must be securely tied from where it is hung. The additional slipping would 

make the wire appear to be more elastic, and therefore have a lower Young’s modulus.  

The Young’s modulus for steel is 200 GPa. The Young’s modulus (Table 1) calculated 

from the experimental data was close to the true value, with a 10% error. The curve in the data 

plotted for the steel rod (Figure 8) may have been a result of rounding. The displacement for 

each applied force was a fraction of a millimeter, but was measured on a ruler, where the 

smallest demarcation was millimeters. The measurement may have alternately been rounded 

down and up, resulting in the curve in the graph.   

b. Simple Extension of Foam Blocks 
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For low density polyurethane foam, the Young’s modulus is approximately 0.1 MPa. The 

Young’s moduli of foam blocks 1, 2, 3, 7, and 9 (Table 2) calculated from the experimental data 

and theory came close to this value. However, blocks 4, 5, 6, and 8 had Young’s moduli two to 

four times greater than the expected value. The dimensions of these blocks were similar to those 

of blocks 1, 2, 3, 7, and 9. The error may have arisen because the glue affected the Young’s 

modulus of certain portions of the foam. For a few of the blocks, the glue between the foam and 

the board or between the foam and the plexiglass had seeped into the foam, making the top and 

bottom faces of the blocks very stiff. This would affect the results of the experiment, making 

those blocks appear to have a larger Young’s modulus.  

Blocks 3 and 6 were thought to be a different kind of foam. However, because of the 

similar results obtained, they appear to actually be the same kind of foam as the other blocks. 

The Poisson ratio for polyurethane foam is approximately 0.3. However, the experimental 

Poisson ratio values were all greater than 0.5. This is an unphysical situation, since the Poisson 

ratio can only take on values between -1 and ½. This strange outcome could have been a result of 

the force not being uniformly applied to the bottom face of the block. The plexiglass squares did 

not have exactly the same cross-sectional area as the foam blocks, so the edges of the blocks 

were not connected to the squares. Thus the center of the foam block experienced a normal force, 

while the outside edges of the block experienced a weaker tangential force. The theory did not 

model this situation properly. This problem was exacerbated by the fact that the glue could not 

hold up under the stress, so the plate continued to detach from the foam as more force was 

applied. As a result, the observed transverse displacement was much greater than it would have 

been if a uniform normal force were applied to the bottom face. Also the expectation of a large 

transverse displacement may have led to the inaccurate measurement of the true displacement. 
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c. Pure Shear of Foam Blocks 

Most blocks had shear moduli between 22 and 56 kPa, but extreme shear moduli values 

were given by blocks 3, 6, and 11 (Figure 13 and 14). Since those blocks, as well as block 10, 

did not demonstrate true shear strain, the theory for pure shear did not fully apply. Vertical 

displacement occurred for those blocks (Figure 15). Those particular blocks should be removed 

from the experiment. Blocks 3 and 6 were very short compared to the other blocks, and blocks 

10 and 11 were more rectangular shaped than the other blocks. The blocks that were more cube-

shaped had better results. The theory may be better tested by using a different material, such as 

rubber. 

d. Strain in a Bending Rod 

For aluminum, Young’s modulus is 70 GPa. All the experimental values for the Young’s 

modulus were about twice this value (Table 4). The modulus should have been constant; 

however, the value varied between each trial. The mean Young’s modulus was 114 with a 

standard deviation of 23.4. For each rod, the experimental values of the Young’s moduli, found 

from Equation 8, decreased with a decrease in the initial length of the rod. This implies that the 

slopes of the linear fits for each rod (Figures 16 and 17) changed by a smaller factor than the 

initial length, as the other dimensions were held constant, though they should have changed by 

the same factor. Thus as length decreased, a larger than expected change in voltage was recorded 

for each applied force. This may be due to the optimism of the experimenters, looking for a 

larger change in voltage than was present, resulting in inaccurate measurement. It may also be 

that the curvature of the rods could not be approximated by the arc of a circle as in the theory, 

since they did not bend uniformly. 
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The slopes of the lines for each rod theoretically would decrease as the initial length 

decreased and the other dimensions were held constant. However as seen in Figure 16, the third 

slope corresponding to the smallest initial length is the largest, though it should be the smallest. 

In Figure 17, the slopes of the lines decreased with decreasing values of initial length, which 

agrees with the theory.  The slopes of the lines for rod 1 are greater than those for rod 2, as 

expected from the theory, since the constant of proportionality in Equation 9 for a given initial 

length is larger for rod 1 than rod 2.  

e. Strain in a Standing Rod 

Based on Equation 10 and the constants provided in Table 7, the strain in the steel rod 

would theoretically have been 0.075 microstrains. The experimental values of 0.168 and 0.138 

microstrains have percent errors of 124% and 84% respectively. The error is likely due mostly to 

the drift and the noise in the chart recorder output. The noise was approximately 1 mV, and the 

measured changes in voltage were on the order of 0.5 mV. Another possible error is due to the 

amplifier, which may have had a greater gain than 1000. 

 By Equation 10 and the constants in Table 7 below, the strain in the plexiglass rod would 

theoretically have been 2.4 microstrains. Experimentally, the values of 6.83, 6.53, and 5.43 have 

percent errors of 185%, 172%, and 126%. Again, the drift in the chart recorder output and the 

gain due to the amplifier are sources of error. Also, rounding up due to an expectation for a 

larger change in voltage may have caused the measurements to be greater than the true value. 

Table 7. The Young’s modulus (E), Poisson ratio (σ), density (ρ), length of the rod (l), position 

of the strain gauge (z), and calculated strain (uxx) for the steel and plexiglass rods.  

Material E (GPa) σ ρ (kg/m3) l (cm) z (cm) uxx (microstrains) 
Steel 200 0.30 7850 91.4 26.7 0.075 
Plexiglass 3.10 0.35 1180 184.2 2.5 2.4 
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